V-SZZ7: Automatic Identification of Version Ranges Affected by
CVE Vulnerabilities

Lingfeng Bao
Zhejiang University
China
lingfengbao@zju.edu.cn

Ahmed E. Hassan

Queen’s University
Canada
ahmed@cs.queensu.ca

ABSTRACT

Vulnerabilities publicly disclosed in the National Vulnerability Data-
base (NVD) are assigned with CVE (Common Vulnerabilities and Ex-
posures) IDs and associated with specific software versions. Many
organizations, including IT companies and government, heavily
rely on the disclosed vulnerabilities in NVD to mitigate their secu-
rity risks. Once a software is claimed as vulnerable by NVD, these
organizations would examine the presence of the vulnerable ver-
sions of the software and assess the impact on themselves. However,
the version information about vulnerable software in NVD is not
always reliable. Nguyen et al. find that the version information
of many CVE vulnerabilities is spurious and propose an approach
based on the original SZZ algorithm (i.e., an approach to identify
bug-introducing commits) to assess the software versions affected
by CVE vulnerabilities.

However, SZZ algorithms are designed for common bugs, while
vulnerabilities and bugs are different. Many bugs are introduced by a
recent bug-fixing commit, but vulnerabilities are usually introduced
in their initial versions. Thus, the current SZZ algorithms often fail
to identify the inducing commits for vulnerabilities. Therefore, in
this study, we propose an approach based on an improved SZZ al-
gorithm to refine software versions affected by CVE vulnerabilities.
Our proposed SZZ algorithm leverages the line mapping algorithms
to identify the earliest commit that modified the vulnerable lines,
and then considers these commits to be the vulnerability-inducing
commits, as opposed to the previous SZZ algorithms that assume
the commits that last modified the buggy lines as the inducing
commits. To evaluate our proposed approach, we manually anno-
tate the true inducing commits and verify the vulnerable versions
for 172 CVE vulnerabilities with fixing commits from two publicly
available datasets with five C/C++ and 41 Java projects, respectively.

*Xin Xia is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9221-1/22/05...$15.00
https://doi.org/10.1145/3510003.3510113

Xin Xia"
Huawei
China
xin.xia@acm.org

Xiaohu Yang
Zhejiang University
China
yangxh@zju.edu.cn

We find that 99 out of 172 vulnerabilities whose version informa-
tion is spurious. The experiment results show that our proposed
approach can identify more vulnerabilities with the true inducing
commits and correct vulnerable versions than the previous SZZ
algorithms. Our approach outperforms the previous SZZ algorithms
in terms of F1-score for identifying vulnerability-inducing commits
on both C/C++ and Java projects (0.736 and 0.630, respectively). For
refining vulnerable versions, our approach also achieves the best
performance on the two datasets in terms of F1-score (0.928 and
0.952).

KEYWORDS
SZZ, Vulnerability, CVE

ACM Reference Format:

Lingfeng Bao, Xin Xia, Ahmed E. Hassan, and Xiaohu Yang. 2022. V-SZZ:
Automatic Identification of Version Ranges Affected by CVE Vulnerabilities.
In 44th International Conference on Software Engineering (ICSE °22), May
21-29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3510003.3510113

1 INTRODUCTION

Software vulnerabilities are software security bugs, posing a severe
threat to software systems. They can be exploited by attackers and
result in a security breach or a violation of the system’s security pol-
icy; for example, attackers can control the system or acquire private
data by exploiting a vulnerability. To share information pertain-
ing to publicly disclosed software vulnerabilities, the US National
Institute of Standards and Technology (NIST) builds the National
Vulnerability Database (NVD). These vulnerabilities are identified
by CVE (Common Vulnerabilities and Exposures) IDs, containing a
description, an estimation of the severity of the vulnerability, the
know affected software, and related references.

Recently, software supply chain security is increasingly impor-
tant for industrial companies as they usually use many OSS software
in their projects. Due to concern about vulnerabilities in project
dependencies, industrial companies often use Software Composi-
tion Analysis (SCA) tools (e.g., Snyk! and Whitesource?) to learn
about vulnerabilities in their dependencies. The output of these
SCA tools is based on CVE/NVD information. However, the soft-
ware versions of CVE vulnerabilities are not always reliable. For

!https://snyk.io/
Zhttps://www.whitesourcesoftware.com/

https://doi.org/10.1145/3510003.3510113
https://doi.org/10.1145/3510003.3510113
https://doi.org/10.1145/3510003.3510113

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

example, for CVE-2018-6621 as shown in the motivating example
(see Section 2.2), its version range was ‘in FFmpeg through 3.4.1°
when created on February 04, 2018, but was updated to ‘through 3.2
after three years (January 05, 2021). Furthermore, Nguyen et al. re-
ported an inconsistent claim between the NVD team and software
vendors in terms of ‘vulnerable version’ [38], i.e., NVD claimed
vulnerable versions were taken from software vendors; whereas,
software vendors claimed they did not know about this information.
Additionally, Nguyen et al. reported that NVD usually applies a
conservative rule: “If version X is vulnerable, then so are all its pre-
vious versions” [38]. So, many earlier versions of software might be
incorrectly marked as vulnerable due to this bias. These erroneous/-
conservative vulnerable versions would cause additional work for
software companies. Additionally, many proprietary software sys-
tems might use an older version of an OSS software due to many
reasons, for example, updating a newer version may break function-
ality. Once a vulnerability in an OSS software is publicly disclosed
in the NVD, software vendors need to remediate its risk within a
specified time according to remediation service level agreements
(e.g., fix a vulnerability within 14 days®). Thus, if a tool can con-
firm that the vulnerability does not affect the OSS software they
use, software vendors do not need to upgrade it and save lots of
resources and time.

Previous research has typically focused on vulnerability man-
agement [19, 42, 48], or patches for vulnerabilities [8, 24, 29, 30, 48].
Few studies have investigated how to refine the software versions
affected by CVE vulnerabilities. In a previous study, Nguyen et
al. [38] proposed an approach, built on the inducing commits gen-
erated by the original SZZ algorithm [51], to detect spurious claims
on vulnerable versions in NVD. They revealed systematic spurious
vulnerability claims, i.e., NVD reported vulnerable, but there is
no code evidence for the presence of the vulnerability. However,
the original SZZ algorithm is designed to detect inducing commits
for common bugs. A previous study [8] found that the empirical
connection between bugs and vulnerabilities is considerably weak
by evaluating code review effectiveness and participant experience.
Many bugs are introduced by a recent bug-fixing commit [44], while
vulnerabilities are usually foundational [39], i.e., introduced in their
initial versions. Additionally, many SZZ variants have been pro-
posed to boost the accuracy of the original SZZ [11, 12, 27, 59].
There are many difficulties to identify the bug-inducing commits
by SZZ algorithms accurately [44, 45]. Therefore, we want to inves-
tigate whether the previous SZZ algorithms can identify inducing
commits for CVE vulnerabilities and refine vulnerable versions
based on inducing commits effectively.

In this study, we propose an approach based on an improved
SZZ algorithm (called V-SZZ) for vulnerabilities to refine software
versions affected by CVE vulnerabilities. To annotate the true in-
ducing commits for vulnerabilities, we follow the model proposed
by Rodriguez-Pérez et al. [44], which is designed for bug-inducing
commit annotation. We choose two two publicly available datasets
with vulnerability-fixing commits, containing five C/C++ and 41
Java projects, respectively. For the C/C++ dataset, we randomly
select 20 CVEs with small size fixing commits (i.e, have larger than

Shttps://www.ivanti.com/blog/industry-driving-toward-14-day-sla-vulnerability-
remediation

L. Bao et al.

zero and less than or equal to five deleted lines) for each project. For
the Java project, we select all CVEs with small size fixing commits.
Finally, we annotated 172 CVE vulnerabilities. We run V-SZZ on
the annotated vulnerability fixing commits to identify the inducing
commits. Then, we identify the vulnerable versions based on the
inducing commits generated by V-SZZ. We also select the origi-
nal SZZ algorithm and its three variants (AG-SZZ, MA-SZZ, and
RA-SZZ) as the baselines. The experiment results show that V-SZZ
can correctly identify inducing commits for 88 and 59 vulnerabili-
ties from C/C++ and Java datasets, respectively. V-SZZ also has a
higher F1-score on C/C++ and Java datasets (0.736 and 0.630) than
the previous SZZ algorithms.

To verify the software versions affected by CVE vulnerabilities,
we first generate vulnerable versions based on the inducing com-
mits we annotated. Then, we manually check the presence of the
vulnerable code in the boundary versions to investigate whether
the generated vulnerable versions are correct. Finally, we compare
them with the version information of CVE vulnerabilities. We also
identify vulnerable versions based on the inducing commits gen-
erated by V-SZZ and the previous SZZ algorithms. We find that
99 out of 172 vulnerabilities’ version information is spurious. The
experiment results show that our approach based on V-SZZ has a
higher F1-score on C/C++ (0.928) and Java dataset (0.952) than the
previous SZZ algorithms.

Our contributions can be summarized as follows:

(1) We build a dataset linking 172 CVE vulnerabilities and their
inducing commits. This dataset covers vulnerabilities from five
C/C++ projects and 41 Java projects. We also manually verify
the software versions affected by these vulnerabilities and find
that the version information of many CVE vulnerabilities is
spurious.

(2) We propose an approach based on an improved SZZ algorithm
(V-SZZ) to refine software versions affected by CVE vulnera-
bilities. The experiment results show that our approach can
effectively identify inducing commits for vulnerabilities and
refine vulnerable versions based on the inducing commits gen-
erated by V-SZZ.

Paper Structure: Section 2 describes the background of the SZZ
algorithms and demonstrates two motivating examples. Section 3
presents our approach based on an improved SZZ to refine vulner-
able versions for vulnerabilities in NVD. Section 4 describes the
manual annotation for inducing commits for vulnerabilities and
verification of vulnerable versions. Section 5 shows the results of
our approach on identifying inducing commits, and refining vul-
nerable versions for vulnerabilities. Section 6 discusses the impact
of duplicated changes on detecting vulnerable versions, the differ-
ence between vulnerabilities and common bugs, and the threats to
validity. Section 7 reviews related work. Section 8 concludes the
paper and discusses future directions.

2 BACKGROUND

In this section, we first introduce the original SZZ and its variants,
then we show two motivating examples.

https://nvd.nist.gov/vuln/detail/CVE-2018-6621#VulnChangeHistorySection

V-SZZ: Automatic Identification of Version Ranges Affected by CVE Vulnerabilities

2.1 SZZ algorithms

The original SZZ and its variants have been widely used in many
previous studies to identify bug-inducing commits based on bug-
fixing commits [2, 3, 5, 14, 25, 62]. SZZ algorithms assume that
the lines of code that are modified by the bug-fixing commits are
the same as or evolved from the lines of code that are modified
by the bug-inducing commits [57]. In our study, we will use the
following SZZ algorithms to investigate whether they can identify
VICs for vulnerabilities, which is the same as a prior study [16].
In this paper, the implementation of these SZZ algorithms used is
from the replication package of the study of Rosa et al. [45].

The original SZZ approach (B-SZZ) was proposed by Sliwerski
et al. [51]. First, B-SZZ identifies bug-fixing changes in issue track-
ing systems based on the description of bug reports and commit
messages. Then, it leverages the diff command provided by the
version control systems (VCS) to identify the lines of code modified
by the bug-fixing changes. Finally, B-SZZ traces back through the
code history to identify the changes that introduce one or more of
the buggy lines by using the annotate command in the VCS.

AG-SZZ was proposed by Kim et al. [27] since they observed that B-
SZZ might consider non-semantic lines, including blank/comment
lines and those involving format modifications (e.g., modifications
to the code indentation) to be buggy lines. Kim et al. achieved a more
precise result by using the annotation graph that provides more
comprehensive information about line moves and modifications
within a file than the annotate command.

MA-SZZ was proposed by Da Costa et al. [11] because they noticed
that AG-SZZ flags meta-changes as potential bug-inducing changes
due to the limitation of the annotation graph. Meta-changes are the
commits that do not change source code, including branch changes
(i.e., changes copying code from one branch to a new branch),
merge changes (i.e., changes applying code modifications from one
branch to another), and property changes (i.e., changes impacting
file properties)

RA-SZZ was proposed by Neto et al. [35] since they observed that
prior SZZ algorithms identify incorrect bug-inducing changes due
to the impact of refactoring lines. Refactoring lines refer to those
involving refactoring modifications (e.g., modification to a function
name). There are two versions of RA-SZZ implemented by Neto
et al. [35, 36], which are based on RefDiff [50] and Refactoring
Miner [54], respectively. In our study, we select the RA-SZZ based
on Refactoring Miner because it is more effective [36]. But RA-SZZ
can only work on Java projects since the two refactoring-detection
tools are only for Java code.

2.2 Motivating Examples

Nguyen et al. demonstrated that the versions affected by a CVE
vulnerability might be spurious and could be refined by its fixing
commits and inducing commits [38]. Figure 1 depicts a motivating
example from CVE-2018-6621. According to its change history,
we find that the version information in the CVE description was
changed from 3.4.1’ to 3.2". This indicates that sometimes it is
difficult for developers to determine the correct vulnerable versions.
We apply the original SZZ approach to identify the inducing commit
based on the fixing commit of this vulnerability. We assume that if

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Project: FFmpeg

CVE-2018-6621

The decode_frame function in libavcodec/utvideodec.c in FFmpeg through 3.2
allows remote attackers to cause a denial of service (out of array read) via a
crafted AVI file.

Previous Commit: 3ecc59

\ from 3.1 to 3.2.10,
Fixing Commit: 118elb ! 3.3.x before 3.3.8,

7 3.4.x before 3.4.2
if (slice_end < 0 || slice_end < slice_start || ;

4+

Vulnerable Version Tags Non-Vulnerable Version Tags
n3.1,n3.1.1, ..., n3.1.11
n3.2,n3.2.1,...,n3.210 n3.2.11,n3.2.12, ..., n3.2.15

-
bytestream?2_get_bytes_left(&gb) < slice_end)

Version tags
n3.1.x (1sx<11)
n3.2.x (1sx<15)

n3.3.x (15x<9) n3.3,n3.3.1,...,,n3.3.7 n3.3.8,n3.3.9

n3.4.x (1=x<8) n3.4,n3.4.1, n3.4.2,n34.3,...,n3.4.8

Figure 1: The first motivating example from CVE-2018-6621

a version contains the vulnerable code, this version is vulnerable;
otherwise, the version is not vulnerable. Thus, the versions between
the inducing commit and the fixing commit are vulnerable. Since
a version in a git repository is usually assigned to a tag, we first
identify the tags of vulnerable versions (see Figure 1). Then, we
find that the vulnerable versions can be summarized into ‘from 3.1
to 3.2.10, 3.3.x before 3.3.8, and 3.4.x before 3.4.2°, which is different
from the version information in the CVE description. Additionally,
we find that several development versions (e.g., 3.2-dev) are also
vulnerable.

However, the current SZZ algorithms cannot identify the true
inducing commits for some vulnerabilities. Figure 2 present another
motivating example from CVE-2015-1830. For the fixing commit
of this vulnerability, the SZZ algorithms identify the commit that
last modified the vulnerable line as the inducing commit (called
‘Previous Commit’ in Figure 2). But if we use this previous commit
to infer the versions affected by this vulnerability, no vulnerable
version would be detected. Nevertheless, this vulnerability still
exists in the version with respect to the previous commit based
on the CVE description and the fixing commit. Thus, we continue
to identify the commits that modified the vulnerable line (called
‘Descendants Commits’). As the change in the first descendants
commit is just a format change, we regard the second descendants
commit as the true inducing commit in which the vulnerable line of
code was firstly added*. This vulnerability can be considered to be
foundational [39] since it was present in an initial version. Based
on this inducing commit, we infer the vulnerable versions are 5.x
before 5.11.2°, which is consistent with the version information in
the CVE description.

4This CVE is a directory traversal vulnerability, also known as the ../ (dot dot
slash) attack. The exploit information in a reference mentions that the vulnerability
can be exploited via a traversal path ’/fileserver/../admin/’. The added API 'FileSys-
tem.getDefault().getPath(String).normalize()’ in the fixing commit removes redundant
elements in a path including any “” or “directory/.” occurrences.

https://nvd.nist.gov/vuln/detail/CVE-2018-6621
https://nvd.nist.gov/vuln/detail/CVE-2015-1830

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Project: Apache ActiveMQ

CVE-2015-1830
Directory traversal vulnerability in the fileserver upload/download functionality for blob
messages in Apache ActiveMQ 5.x before 5.11.2 for Windows allows remote attackers

to create JSP files in arbitrary directories via unspecified

") - ‘ 5.x before 5.11.2
N

Descendants Commit: e6d20f
B
Descendants Commit: 540dd5

String guarded = filename.replace(":", "

L
7
- String guarded = filename.replace(":", "_"). -

+ String guarded = filename.replace(":", "_"). &

‘ 5.x before 5.11.2

Previous Commit: 9fd5ch)

m 7
</>, - String guarded = filename.replace(.= “
/. e + String guarded = filename.replace().replace("\\", "").replace("/", ""); =,
A
1
Fixing Commit: 729c47 /
— - String guarded = filename.replace(":", "_").replace("\\", "").replace("/", ""); =
</>. + String guarded = filename.replace(’
i + guarded = FileSystems.getDefault().getPath(guarded).normalize().toString();

Figure 2: The second motivating example from CVE-2015-
1830

Furthermore, there are a few CVE vulnerabilities that have no
vulnerable versions. For example, the version information of CVE-
2017-5024 is ‘FFmpeg in Google Chrome prior to 56.0.2924.76". This
vulnerability indeed affects FFmpeg but the version information
only mentions the version of Google Chrome. We identify the
vulnerable version using SZZ algorithm based on and find the
version information is ‘from 2.0 to 3.2.15°

From the first example, we show that the version information in
some CVE vulnerabilities is spurious, and the vulnerable versions
can be refined based on the fixing commits and the inducing com-
mits generated by SZZ algorithms. However, the second example
reveals that SZZ algorithms might not identify the true inducing
commit. Because SZZ algorithms assume the commit that last mod-
ified the buggy line introduced the bugs. However, unlike common
bugs, many vulnerabilities are foundational and introduced in an
earlier version. Therefore, in this study, we want to investigate
whether SZZ algorithms can effectively identify inducing commits
for vulnerabilities and help refine the spurious versions of CVE
vulnerabilities. We also want to improve the current SZZ algo-
rithms to identify inducing commits for vulnerabilities and refine
the vulnerable versions effectively.

3 THE PROPOSED APPROACH

Figure 3 presents the process of our approach. The input of our
approach is a vulnerability with its fixing commits in a software
project. First, we apply an improved SZZ algorithm to identify
inducing commits for this vulnerability. Then, we scan the project
repository to identify the commits that contain the same changes
in the fixing commits and inducing commits. Finally, we infer the
versions affected by this vulnerability based on the fixing commits
and inducing commits.

SZZ for vulnerabilities. As shown in the second motivating ex-
ample in Section 2.2, vulnerabilities can be introduced by a earlier
change on the vulnerable code in the fixing commit. Moreover,
Ozment and Schechter found that more than 50% vulnerabilities are
foundational, i.e., they were present in their initial versions [39].
However, one assumption of SZZ algorithms is that for each line
that is modified by the commits for fixing a bug, the commit that

L. Bao et al.

last modified the line introduced this bug, which is not suitable for
the identification of many vulnerability-inducing commits. So, the
current SZZ algorithms might not identify inducing commits for
vulnerabilities effectively.

Therefore, we propose a modified SZZ algorithm called V-SZZ,
aiming to identify inducing commits for vulnerabilities by going
further back to get earlier changes on the vulnerable code. Similar
to the study of Rodriguez-Pérez et al. [44], we call the immediately
previous commits to the lines changed in the fixing commit as
the previous commits and all the commits that previously mod-
ified the lines changed in the fixing commit as the descendants
commits.

Given each modified line in a fixing commit, V-SZZ first identifies
the previous commit using the git blame command. Similar to
these improved SZZ algorithms [11, 27, 35], we ignore the non-
semantic lines of code, including blank/comment lines and those
involving format modifications. Then, to automatically identify
descendants commits, we first leverage the line mapping algorithm
to map the modified line to the line in the previous version. Then,
we continue to use the git blame command to go back to identify
the descendants commits.

For Java projects, we leverage the abstract syntax tree (AST) map-
ping algorithms [13, 15, 20] to map the modified lines between two
versions of the source code files. We implement the line mapping
algorithm provided by Fan et al. [17].

However, most previous studies for AST mapping algorithms
focused on Java projects and did not provide the implementation
for other languages. Thus, for C/C++ projects, we map the modified
lines considering the string similarity and localization between the
lines. We compute the line similarity based on the edit distance
and set the similarity threshold is equal to 0.75. But this might
result in some incorrect mappings, which would be discussed in
the evaluation (see Section 5). If the line mapping algorithm can
identify a corresponding line in the previous commit or descen-
dants commits, we continue going back by running the git blame
command for the line. This process stops until the line mapping
algorithm identifies the line as a new line, the source code file of
the line is firstly added, or the commit is the initial commit of the
repository.

We consider the earliest commit as the inducing commit for
each modified line of code since vulnerabilities are more likely
to be foundational. Finally, V-SZZ can generate a set of inducing
commits for a vulnerability.

Duplicated change detection. When using Git for software de-
velopment, developers often create multiple branches to manage
workflows of different versions in a project. To apply the change in
a commit among multiple branches, developers often use the git
cherry-pick command to pick it individually or the git merge
command to integrate several changes. We find that the fixing com-
mits or inducing commits of vulnerabilities are often applied to
other branches. For example, in the first motivating example, the
fixing commit 118e1b has been cherry-picked three times.

To infer vulnerable versions accurately, we need to identify all the
commits that contain changes in the fixing commits and inducing
commits. If missing a fixing commit, some non-vulnerable versions
would be considered vulnerable. On the other hand, if missing an

https://github.com/FFmpeg/FFmpeg/commit/118e1b0b3370dd1c0da442901b486689efd1654b

V-SZZ: Automatic Identification of Version Ranges Affected by CVE Vulnerabilities

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Fixing commit
g line
line,

line,

SZZ for Vulnerabilit
v

: @ Fixing commits ®

i @ Duplicated fixing commit

Previous commits /
Descendants commits

Duplicated
Change Detection

Vulnerable

Line Mapping Versions Tags

Inserted /
New File /
Init Commit

Vulnerable Version Detection

Branch 1

1 . .

E . Inducing commits . .
! @ \uinerable version

1 .

i @ Non-vulnerable version

*—0—

N Branch 2

o—0—

Figure 3: The proposed approach

PR: 1923
Submitted by: Daniel Mentz <daniel.m@sent.com>, Robin Seggelmann <seggelmann@fh-muenster.de>

Approved by: steve@openssl.org

Don't access freed data structure.

$ OpenssL1.0_0-stable + OpensSL1.0 1-stable + OpenssL. 1.0 2-stable

715feb

Update from 1.0.0-stable.

¥ master
© openssl-3.0.0-beta2 ... Ope

ps-2.0-pl1

Figure 4: Two commits in the project OpenSSL with the same
change

inducing commit, some vulnerable versions would be considered
as not vulnerable.

To detect the cherry-picked commits for a commit, we can search
its commit id in the commit message because a sentence with the
following pattern is automatically generated in the commit mes-
sage: “cherry picked from commit xxx”. However, some commits can
be copied to another branch without explicit information in the
commit message. For example, Figure 4 present two commits with
the same change from the project OpenSSL. The below commit in
the figure is copied from the above commit for an upgrade. We use
a hash-based duplicated change detection method to identify the
commits copied to other branches without explicit messages. We
first hash the hunks of all commits in a project repository. Given a
commit, we search for the commits that contain all the hashes in it.

Vulnerable version detection. In this step, we want to identify
the versions affected by a vulnerability based on a set of fixing com-
mits and their corresponding inducing commits. In a Git workflow,
project maintainers usually assign a tag to a commit for a release
version, such as ‘ n3.1” in FFmpeg and ‘OpenSSL_1_0_0-stable’ in
OpenSSL. Hence, our goal is to identify these commits with ver-
sion tags that are affected by a vulnerability. The idea is intuitive,
i.e., the vulnerability introduced by the inducing commits will be
transferred to the future commits until it gets fixed. Thus, the vul-
nerable versions are between the inducing commits and the fixing
commits. We first identify the commits with version tags that are
reachable to the inducing commits (denoted as C;). A commit A is
reachable to another commit B, indicating that A belongs to the

parents or the ancestor commits of B. We also identify the commits
with version tags that are reachable to the fixing commits (denoted
as Cf). Then, we can get the set of the vulnerable versions Cy, i.e.,
the set difference of C; and Cy (ie., Ci — Cy).

As shown in Figure 3, the two commits in green color are not
vulnerable because the one in the first branch is after a fixing
commit and the other one in the second branch is not reachable
to the inducing commit. The vulnerable versions in the figure are
marked as brown. Finally, the output of this step is a set of version
tags that are affected by a vulnerability, see an example in Figure 1.

4 MANUAL ANNOTATION

To investigate the effectiveness of the SZZ algorithms, we need a
ground truth linking vulnerabilities and the true inducing commits.
However, to the best of our knowledge, no such ground truth ex-
ists. Nguyen et al. manually verified the results generated by their
approach for 80 vulnerabilities from two projects, but they did not
make the dataset public [38]. Thus, in this section, we aim to build a
ground truth linking vulnerabilities and their corresponding induc-
ing commits. We first select two datasets with vulnerability-fixing
commits. Then, we annotate the inducing commits for vulnerabili-
ties by following the model proposed by Rodriguez-Pérez et al. [44],
and manually verify the vulnerable versions based on the anno-
tated inducing commits. Finally, we present the results of manual
annotation.

4.1 Dataset

To investigate whether our proposed approach can detect induc-
ing commits for vulnerabilities and refine vulnerable versions ef-
fectively, we select two datasets of vulnerability-fixing commits
containing projects written in two programming languages, i.e.,
C/C++ [30] and Java [43], respectively. Table 1 presents the statis-
tics of the vulnerabilities and the corresponding fixing commits
in the two datasets. In this table, #Vul and #VFC are the number
of the vulnerabilities and the fixing commits, respectively. Notice
that some vulnerabilities have multiple fixing commits. We also
count the vulnerability fixing commits that have no deleted lines

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

L. Bao et al.

Table 1: The statistics of the vulnerabilities and the corresponding fixing commits in two dataset.

#SMALL

Language Project #Vul #VFC #ZERO (NO_CVE,_ID) #LARGE
FFmpeg 908 908 234 583 (435) 91
ImageMagick 756 748 207 423 (262) 118

C/C++[30] linux-kernel 1,716 1,841 461 887 (1) 493
OpenSSL 132 126 30 53 (0) 43
php-src 426 414 98 223 (42) 93
Total 3,938 4,037 1,030 2,169 (740) 838
apache/tomcat 69 98 16 32 (0) 50
apache/struts 44 76 6 39 (0) 21
apache/tomcat701 35 59 n.a. n.a. n.a.

4

Java [43] jenkinsci/jenkins 34 43 7 27 (0) 9
spring-projects/ 24 43 4 17 (1) 32
spring-framework
...(more 199 projects)

Total 624 1,282 172 387 (9) 557

! Since the repository of Apache Tomcat70 has been removed on GitHub, we cannot get the number of deleted lines

in VFCs and set the values to n.a..

(#ZERO), larger than zero and less than or equal to five deleted lines
(#SMALL), and large than five deleted lines (#LARGE), respectively.

The dataset with C/C++ projects is collected by Liu et al. [30].
There are five popular C/C++ projects, i.e., FFmpeg (a multimedia
framework), ImageMagick (a representative raster/vector image file
processing software suite), OpenSSL (an implementation of secure
communication protocols), PHP-SRC (the official interpreter for
PHP language), and Linux kernel (one of the most widely used
operating systems). They collect a large number of vulnerabilities
with fixing commits by utilizing automated crawlers and spending
months of manual effort. There are 3,938 vulnerabilities with 4,037
fixing commits in this dataset.

The dataset with Java projects is collected by Ponta et al. [43].
They construct this dataset by collecting publicly disclosed vulner-
abilities affecting more than 200 Java open source projects used in
SAP products or internal tools, including Apache Tomcat and Struts,
Jenkins (an automation server facilitating continuous integration
and continuous delivery), and Spring framework. In total, there are
624 vulnerabilities with 1,282 fixing commits in this dataset.

We have many popular projects with two programming lan-
guages that span a wide range of functionalities based on the above
two datasets. Thus, we believe that various types of vulnerabilities
and the corresponding fixing commits have been covered.

4.2 Manual Annotation for
Vulnerability-Inducing Commits

To annotate inducing commits for vulnerabilities, we follow the
model proposed by Rodriguez-Pérez et al. [44], which is designed
to identify how bugs are introduced in software components. Given
a bug-fixing commit, Rodriguez-Pérez et al. check the previous
commits and the descendants commits of each line in the bug-
fixing commit until identifying the first-failing change. They check
whether a bug is present in a certain snapshot using a “perfect test”.
Since there is no such a perfect test in practice, they use a mentally

designed test as a proxy of the perfect test based on bug reports,
comments, and discussions from developers.

We use a similar approach to annotate the inducing commits for
vulnerabilities. Following Rodriguez-Pérez et al’s idea of “perfect
test”, we leverage the related information of a vulnerability (e.g.,
the CVE description, fixing commits, and commit messages) to
determine whether it exists on a snapshot (referred to as a commit
on a software system). To help annotators go further back and
quickly check previous commits and descendants commits, we
develop a web application that integrates the git blame tool. For
each modified line in a vulnerability fixing commit, we first identify
its previous commit to check whether the vulnerability exists in the
snapshot, then go further back recursively to analyze descendants
commits.

Thus, we might get multiple inducing commits when there are
more than one modified line of code. However, according to the
model of Rodriguez-Pérez et al. [44], there is just one change that
introduced a vulnerability. Thus, we consider the earliest one in the
annotated inducing commits as the true inducing commits because
we assume all the modified lines of code in the fixing commits
are vulnerable and the earliest inducing commits that contain the
vulnerable lines of code are more likely to be vulnerable.

To show the annotation process, we can refer to the second
motivating example (as shown in Figure 2). We also find that only
four vulnerabilities (see Table 2) are introduced by the previous
commits but not the descendants commits. For example, CVE-2018-
14884 in Fig 5 is not foundational. For example, the commit message
of the fixing commit for CVE-2018-14884 in Figure 5 mentions that
“The sizeof{)s for Content-Length and Transfer-Encoding were missing
the trailing ":". So, we think this vulnerability is introduced by the
previous commit because the sizeof function in the vulnerable line
of code is firstly added in the previous commit.

https://ffmpeg.org
https://imagemagick.org
https://www.openssl.org
https://www.php.net
https://www.kernel.org
https://www.sap.com
https://nvd.nist.gov/vuln/detail/CVE-2018-14884

V-SZZ: Automatic Identification of Version Ranges Affected by CVE Vulnerabilities

Project: php-src

CVE-2018-14884

An issue was discovered in PHP 7.0.x before 7.0.27, 7.1.x before 7.1.13, and 7.2.x
before 7.2.1. Inappropriately parsing an HTTP response leads to a segmentation fault
because http_header_value in ext/standard/http_fopen_wrapper.c can be a NULL value
that is mishandled in an atoi call.ectors.

Descendants Commit: eld0Oal

True inducing

Previous Commit: 5146d9 1 commits

’ - } else if (strncasecmp(http_header_line, "Content-Length: ", 16)) {

Fixing Commit: 0e097f ’

- }else if (Istrncasecmp(http_header_line, "Content-Length:", sizeof("Content-Length")-1)) {

Figure 5: An example for annotating inducing commit from
CVE-2018-14884

The first author and a postdoc who both have more than seven
years of programming experience annotated the inducing com-
mits for the selected vulnerabilities (see Section 4.4). We use Fleiss
Kappa [18] to measure the agreement between the two annota-
tors. The Kappa value between the two annotators is 0.76, indi-
cating a substantial agreement. The two annotators resolved the
disagreements by discussing and reviewing the information of the
vulnerabilities.

4.3 Manual Verification for Vulnerable
Versions

Our proposed approach can generate a set of version tags affected by
a vulnerability. However, we cannot compare them with the textual
description about vulnerable versions in CVE automatically because
the format of the version tags and the textual description about
vulnerable versions vary across projects, see the two motivating
examples in Section 2.2. Hence, we want to verify whether the
set of versions tags generated by our approach is truly vulnerable
versions and consistent with the version description in CVE.

Based on the fixing commits and the inducing commits we an-
notated, we apply our approach to generate the set of version tags.
Then, we manually check whether the boundary versions are vul-
nerable or not. With the same assumption in the study of Nguyen
et al. [38], we think a software version is vulnerable if it contains
the vulnerable code; otherwise, it is not vulnerable. Considering
the version tags in the first motivating example (see Figure 1), we
manually check the boundary versions (e.g., 3.1, 3.2, 3.2.10, etc.) and
find that the vulnerable code exists in these versions. We also check
the non-vulnerable boundary versions (e.g., 3.0.12 (the previous ver-
sion of 3.1), n3.2.11, etc.) and find that the vulnerable code does not
exist in these versions. Finally, we summarize the set of version
tags into a textual description and verify whether the vulnerable
versions we summarize are consistent with the version information
of the CVE vulnerability.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

The same two annotators who annotated the inducing commits
verified vulnerable versions generated by our approach. For each
vulnerability-fixing commit, our approach also generate the vul-
nerable versions for the previous commit and all the descendants
commits. Then, the two annotators checked all the boundary ver-
sions manually in the results.

4.4 Vulnerability Selection

Since the manual annotation is time-consuming and labor-intensive,
we select a subset of vulnerabilities from the two datasets described
in Section 4.1. First, we exclude the vulnerabilities using the follow-
ing criteria:
e We ignore the vulnerabilities that are not listed in CVE/NVD
because we need to leverage the information of CVEs as a proxy
of the “perfect test” to annotate the inducing commits. Many
vulnerabilities in the two datasets are not listed in CVE/NVD (see
Table 1). Liu et al. identified 1,462 security bugs associated with
fixing commits and put them into their dataset [30]. Also, in the
Java dataset, 29 vulnerabilities do not have a CVE identifier, and
46 vulnerabilities have been assigned a CVE identifier by a CVE
numbering authority but are not yet published on NVD [43].
The vulnerabilities whose fixing commits have no deleted lines of
code are excluded. As shown in Table 1, there are 25.5% (1,030/4,037)
and 13.4% (172/1,282) of fixing commits that have no deleted lines
in the two datasets. One reason is that SZZ algorithms cannot
identify inducing commits for those fixing commits since they
assume the deleted lines of code in fixing commits are the same
as or evolved from the lines of code in the inducing commits.
Another reason is that such vulnerabilities are usually founda-
tional (i.e., they exist in their initial versions). All lines of code in
the modified file of the versions before the fixing commits can
be considered as vulnerable [38]. So, the commit in which the
modified file was initialized can be considered as the inducing
commit.

e We also exclude the vulnerability whose fixing commits contain
large changes, i.e., having more than five lines of code. Changed
lines of code in the fixing commits are not necessarily vulnerable,
and it is difficult to identify such lines of code in a large change.
Besides, the manual annotation for inducing commits with large
changes is complicated and time-consuming.

o If the versions affected by a CVE vulnerability cannot be mapped
to the version tags in a software project, it would be excluded
since we cannot verify whether its vulnerable versions are right
or not. For example, all the version tags in the project Apache/-
Tomcat are above 7.0.0 but the version information in some CVE
vulnerabilities might be lower versions, e.g., 5.x.x or 6.x.x.

Among the remaining vulnerabilities, we randomly sample 20
vulnerabilities for each project from the C/C++ dataset (i.e., 100 vul-
nerabilities in total). For the Java dataset, we label all the remaining
vulnerabilities (i.e., 72) covering 41 projects. In total, we annotate
172 CVE vulnerabilities with 188 fixing commits.

4.5 Annotation Results

Table 2 presents the annotation results. In this table, #Descendant-
Commit is the number of the vulnerability-fixing commits that
have descendants commits, #IntroducedByPC is the number of the

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Table 2: The annotation results.

C/++ Java Total

#Vulnerability 100 72 172
#FixingCommit 100 88 188
#DescendantCommit 40 52 92
#IntroducedByPC 3 1 4

#VersionInconsistent 56 43 99

vulnerabilities induced by the previous commits if descendants com-
mits exist, and #VersionInconsistent is the number of vulnerabilities
whose version information is inconsistent with our verified vulnera-
ble versions. We find that approximately half of vulnerability-fixing
commits (92/188) have descendants commits. Among the vulnera-
bilities that have descendants commits, most of them are introduced
by the descendants commits except for four cases. We also find that
all the vulnerabilities except for these four cases are foundational,
i.e., they exist in their initial version. Additionally, out of 172 vul-
nerabilities, 99 vulnerabilities’ version information in NVD/CVE is
inconsistent with the manually verified vulnerable versions. Espe-
cially, among the 99 vulnerabilities we find that there are 11 cases in
which the vulnerability-free versions are also not affected by other
vulnerabilities. But these corresponding projects have a very small
number of vulnerabilities. For example, the project Facebook/Buck
only has one CVE in total. Many inconsistent cases are that the
earlier versions of a software are wrongly marked as vulnerable.
This is because NVD applies a conservative rule: “If version X is
vulnerable, then so are all its previous versions” (a folk knowledge
from [38]).

5 EXPERIMENT RESULTS
In this study, we want to answer the following research questions:

RQ1: Can our approach effectively identify inducing com-
mits for vulnerabilities?

RQ2: Can our approach effectively refine software versions
affected by CVE vulnerabilities?

5.1 Evaluation Metrics

Given all the inducing commits we annotated and the set of vulner-
ability inducing commits detected by SZZ algorithms, we employ
two widely metrics, i.e., recall and precision, to measure the accu-
racy of SZZ algorithms. These two metrics are also used in previous
studies [36, 45] to evaluate the performance of SZZ algorithms,
which are calculated as follows:
|correct. Nidentified,|

|correct.|
|correct. N identified,|

lidentified,|
where, correct. and identified, are the set of true positive inducing
commits and the set of inducing commits detected by SZZ algo-
rithms, respectively. We also compute the F1-score, which is the
harmonic mean of precision and recall.

We use similar metrics to evaluate the effectiveness of our ap-
proach on refining vulnerable versions affected by CVE vulnerabil-
ities. Given a vulnerability vi, a set of tags of vulnerable versions
are detected based on the annotated inducing commits and fixing

recall, =

precisione =

L. Bao et al.

Table 3: The results of SZZ algorithms on identifying induc-
ing commits for vulnerabilities in C/C++ projects.

#Identified Recall Precision F1-score

B-SZZ 63 0.676 0.568 0.617
AG-SZZ 67 0.730 0.509 0.600
MA-SZZ 65 0.689 0.481 0.567
V-§Z2Z 86 0.851 0.649 0.736

Table 4: The results of SZZ algorithms on identifying induc-
ing commits for vulnerabilities in Java projects.

#Identified Recall Precision Fl-score

B-SZZ 47 0.687 0.359 0.472
AG-SZZ 51 0.731 0.521 0.608
MA-SZZ 54 0.761 0.418 0.540
RA-SZZ 30 0.591 0.433 0.499
V-S§ZZ 59 0.836 0.505 0.630

commits, which are denoted as correcty ;. For each SZZ algorithm,
we also have a set of tags of vulnerable versions based on the in-
ducing commits generated by it, which is denoted as identifiedy;.
Then, we compute the recall and precision of an SZZ algorithm
on refining vulnerable versions. Here, recall indicates the ratio of
the vulnerable versions detected by an SZZ algorithm to the whole
true vulnerable versions, while precision indicates the accuracy
of an SZZ algorithm on detecting vulnerable versions. Finally, we
report the average of the recalls and precisions on the annotated
vulnerabilities, see the following formulas:

|correcty; Nidentifiedy;|

average_recall = /N

) |correctyi|
[correcty; N identifiedy;|

N
lidentifiedyi| /

N
average_precision = E
vi=1

Where N is the number of vulnerabilities.

5.2 Results

5.2.1 RQI. Table 3 and 4 present the results of SZZ algorithms on
identifying inducing commits for vulnerabilities in C/C++ and Java
projects, respectively. We also count the number of cases in which
the inducing commits detected by an SZZ algorithm contain the
true inducing commit; see the column #Identified in the two tables.
Note that RA-SZZ cannot work on many vulnerabilities (i.e., 21), so
we exclude these cases in Table 4. Out of 100 and 72 vulnerabilities
in C/C++ and Java projects, V-SZZ can identify the true inducing
commits for 86 and 59 vulnerabilities, respectively. V-SZZ detects
19 and 6 more inducing commits that the best performing baseline
and its F1-score improves the best performing baseline by 19.3% and
3.6% for C/C++ and Java datasheet, respectively. The improvement
is considerably good. In terms of recall, precision, and F1-score,
V-SZZ achieves the best performance except for the precision on
the vulnerabilities in Java projects. And the difference between the
precisions of AG-SZZ and V-SZZ is small (0.521 vs. 0.505). Thus,
we believe that V-SZZ is more effective in identifying inducing
commits for vulnerabilities than the previous SZZ algorithms.

V-SZZ: Automatic Identification of Version Ranges Affected by CVE Vulnerabilities

Descendants Commit: 42d310

</> *\
. \
. . 1
Previous Commit: 7d30ae 7
. - Document<T> doc = ATOM_ENGINE.getparser().parse(is); r,
</> -
J \
v
.. . \
Fixing Commit: 9beb2d 1
!
r
</>_ - Document<T> doc = parser.parse(is) -
i

Figure 6: An example of a failing line mapping.

However, V-SZZ still failed to identify inducing commits for a
small number of vulnerabilities. One reason is that a few vulnera-
bilities” true inducing commits are not in the earliest descendants
commits, e.g., CVE-2018-14884 in Figure 5. Another reason is that
the mapping algorithms in our proposed approach fail to identify
the modified lines. For C/C++ projects, the line mapping algorithm
based on string similarity does not consider the semantic of the
source code. For example, in CVE-2016-2549 from linux-kernel,
the modified line hrtimer_cancel (&stime->hrt); in the previ-
ous commit is wrongly mapped to a deleted line with the same
content in another function. For Java projects, the mapping algo-
rithms based on AST [17] also failed in some cases. Figure 6 presents
an example from CVE-2016-8739 in the project Apache/CXF. We
find that a vulnerable line in the fixing commit cannot be mapped
in the previous commit so that our approach cannot identify the
descendants commit, which is the true inducing commit.

Compared to the previous SZZ algorithms, V-SZZ can detect
more true inducing commits for the vulnerabilities and outper-
form them in terms of F1-score.

5.2.2 RQ2. Table 5 and 6 present the results of SZZ algorithms
on refining vulnerable versions affected by the vulnerabilities in
C/C++ and Java projects, respectively. We also count the number
of cases in which the vulnerable versions are correctly inferred
based on the inducing commits detected by an SZZ algorithm, de-
noted as #Correct in the two tables. We find that the number of
vulnerabilities with correct vulnerable versions detected by SZZ
algorithms increases comparing to the number of vulnerabilities
with true inducing commits. This is because the inducing commits
wrongly detected by SZZ algorithms might belong to the same
version of the true inducing commit. As shown in the table, our
approach based on V-SZZ has a much higher recall than the other
SZZ algorithms. This indicates that our approach has fewer false
negatives (i.e., a version is identified as not vulnerable, but it is
vulnerable). Compared to false positives (i.e., a version is identified
as vulnerable, but it is not vulnerable), false negatives might result
in more potential security risk. Because a conservative action is
to upgrade the newest version without the vulnerability for false
positives, while if a version is considered not vulnerable, no action
might be taken. On the other hand, our approach based on V-SZZ
has similar precisions to the other SZZ algorithms. Overall, in terms
of F1-score, our approach based on V-SZZ achieves the best perfor-
mance on the vulnerabilities from both C/C++ and Java projects
(0.928 and 0.952, respectively). Furthermore, to measure whether

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Table 5: The results of SZZ algorithms on identifying vulner-
able versions in C/C++ projects.

#Correct AvgRecall AvgPrecision AvgF1

B-SZzZ 69 0.789 0.960 0.866
AG-SZZ 73 0.821 0.950 0.881
MA-SZZ 71 0.829 0.930 0.877
V-8§7Z 87 0.930 0.927 0.928

Table 6: The results of SZZ algorithms on identifying vulner-
able versions in Java projects.

#Correct AvgRecall AvgPrecision AvgF1

B-SZZ 53 0.875 0.948 0.910
AG-SZ7Z 55 0.871 0.957 0.912
MA-SZZ 54 0.894 0934 0914
RA-SZZ 30 0.640 0.672 0.656
V-SZZ 59 0.941 0.963 0.952

the improvement of our approach based on V-SZZ over the previ-
ous SZZ algorithms is statistically significant, we apply Wilcoxon
signed-rank test [58] at 95% significance level on F1-scores. We
find that the p-values are smaller than 0.05, which indicates the
improvement is statistically significant at the confidence level of
95%.

In terms of F1-score, our approach based on V-SZZ can effec-
tively refine version ranges affected by CVE vulnerabilities and
achieve higher performance than those based on the previous
SZZ algorithms.

6 DISCUSSION
6.1 The Impact of Duplicated Changes

The second step of our approach is to detect commits that have the
duplicated changes of the fixing commits and inducing commits.
The novelty contribution of this step is minor, but it has a significant
impact on the results of our approach. We find that the patches for
approximately half of the vulnerabilities we annotated in the study
are copied among different fixing commits (i.e., 48/100 and 37/72
for the C/C++ and Java dataset, respectively). Similarly, we also
find that 8 and 11 vulnerabilities whose inducing commits we an-
notated are duplicated in the other commits for the C/C++ and Java
dataset, respectively. To verify the impact of duplicated changes, we
apply our approach without detecting duplicated changes on our
annotated dataset. We find that the detected vulnerable versions of
all vulnerabilities are different from those considering duplicated
changes. If missing commits with duplicated changes in the fixing
commiits, the number of false positives increases. If missing com-
mits with duplicated changes in the inducing commits, the number
of false negatives increases. For example, the vulnerability-fixing
commit in the first motivating example (see Figure 1) has three
cherry-picked commits. If we do not consider these three cherry-
picked commits, some non-vulnerable versions (e.g. versions above
3.2.10, 3.3.7, and 3.4.2) are detected as vulnerable. Therefore, we

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Table 7: The results of the SZZ algorithms on the common
bugs

B-SZZ AG-SZZ MA-SZZ RA-SZZ V-SZZ

TP 53 43 47 37 29
FP 26 36 32 42 50

think it is necessary to detect the duplicated changes to get more
accurate vulnerable versions.

6.2 V-SZZ for Common Bugs

Previous SZZ algorithms assume that the previous commits in-
troduced the bugs, but they fail to identify inducing commits for
many common bugs [45]. Thus, we want to investigate whether
some common bugs can be identified by going back to look at the
descendants commits. We run V-SZZ and the previous SZZ algo-
rithms on the bug-fixing commits collected by Rosa et al. [45]. They
built a “developer-informed” oracle for the evaluation of the SZZ
algorithms by identifying bug-fixing commits in which developers
explicitly reference the commit(s) that introduced a fixed bug. We
select the bug-fixing commits from Java projects in their dataset,
which contains 79 bugs.

Table 7 presents the results of the SZZ algorithms. We count
a true positive if the set of bug-inducing commits generated by
SZZ algorithms contains the true inducing commits; otherwise, we
count a false positive. We find that B-SZZ detects the most true pos-
itives than the other SZZ algorithms. This might be because some
bug-inducing commits are introduced by non-semantic lines. For
example, the bug-induing commit for a bug-fixing commit ddbda7
from the project DigitalPebble/storm-crawler is associated with a
comment line. On the other hand, V-SZZ detects the least true pos-
itives. Besides, we check the difference between the set of inducing
commits generated by V-SZZ and the other SZZ algorithms. We find
that V-SZZ cannot detect additional bug-inducing commits. But
if considering all the previous commits and descendants commits
as the bug-inducing commit set, V-SZZ can detect one additional
bug-inducing commit (the bug-fixing commit 78d23a in the project
adamretter/exist). Therefore, we find that most common bugs are
not introduced by the descendants commits, which is different from
vulnerabilities.

6.3 V-SZZ for Large Commits

In this study, we only apply V-SZZ on the vulnerability-fixing com-
mits with small size since manual verification is time-consuming
and difficult. But we think V-SZZ can work on large commits.
Nguyen et al. show that small commits help reduce bias in the ap-
proach. This is because large commits might contain noisy (nonessen-
tial or trivial) changes. But as V-SZZ detects the earliest commits
that modify the vulnerable code, these noisy changes usually in-
troduce false positives (i.e., a version is claimed to be vulnerable
while it is not). In practice, false positives can be accepted since it
requires developers to upgrade to a new version. For false negatives,
developers might ignore it, and the vulnerability is not removed.
Additionally, we can identify the root changes to reduce these noisy
changes by using some existing approaches [47, 55].

L. Bao et al.

6.4 Threats to Validity

Construct Validity. We follow the model proposed by Rodriguez-
Pérez et al. [44], which is based on the idea of “perfect test”, to
annotate the inducing commits for vulnerabilities. However, we
have to create such “perfect test” mentally based on the information
provided by CVEs, which might result in threats in the results. To
mitigate this threat, two annotators discussed the cases in which
we were not sure the true inducing commits. Also, we verified the
vulnerable versions generated by our approach manually. To miti-
gate this threat, we manually checked whether the vulnerable code
exists in the boundary versions. Moreover, to decrease the difficulty
of the manual annotation, we only focus on the vulnerability-fixing
commits with a small number of modifications.

Internal Validity. There might be errors when building the dataset
since the two annotators are not the developers of the software in
the annotated dataset. Both annotators have seven years program-
ming experience in Java and C/C++ programming. Additionally,
two annotators check all the information about a vulnerability
independently and discuss if they cannot reach an agreement.

External Validity. One of the threats is the number of vulnerabil-
ities we analyzed in the study. We analyzed 172 vulnerabilities in
total. But this number is similar to the number of bugs manually
analyzed in the previous studies [11, 23, 44]. Another threat is that
there is only two programming languages (C/C++ and Java). A
previous survey shows that C/C++ and Java covered approximately
65% vulnerabilities [1]. In the future, we plan to investigate more
vulnerabilities with different programming languages.

7 RELATED WORK

In this section, we first present some related work on vulnerabil-
ities analysis, then review the studies about the evaluation and
application of SZZ algorithms.

7.1 Vulnerabilities Analysis

There are many studies that analyze different aspects of vulnerabil-
ities [8, 24, 29, 30, 34, 39, 48]. Ozment et al. studied the evolution of
vulnerabilities in the OpenBSD operating system, and found that
remedying half of the known vulnerabilities cost average 2.6 years
for a release [39]. Shahzad et al. conducted an exploratory study
of vulnerabilities life cycles and found that the vendors have been
becoming more agile in patching the vulnerabilities and the access
complexity of vulnerabilities has been increasing [48]. Nappa et al.
investigated the patch deployment process in ten client applications,
and analyzed when security updates were available to clients and
how quickly clients patched [34]. Huang et al. analyzed 131 patches
from five open-source project, and showed that there exist cases
where patch development was lengthy and error-prone [24]. Li and
Paxson conducted a large scale empirical study with more than 3,000
CVE entries and the related fixing commits [29]. They analyzed the
duration of the impact of vulnerabilities, the reliability of the fix, and
the difference with non-security fixes. Camilo et al. conducted an in-
depth analysis of the Chromium project to examine the relationship
between bugs and vulnerabilities [8]. They demonstrated that bugs
and vulnerabilities are empirically dissimilar groups, prompting us
to investigate the inducing commits for vulnerabilities. Liu et al.

V-SZZ: Automatic Identification of Version Ranges Affected by CVE Vulnerabilities

analyzed the vulnerability distribution based on a large vulnerabil-
ity dataset, consisting of all known vulnerabilities associated with
five representative open source projects [30].

Many researchers also have investigated how to characterize
and predict vulnerable code based on different attributes, such as
code [22, 37, 41, 46, 49], commiit [32, 33], and human factors [33, 49].
For example, Shin and Williams used code complexity metrics to pre-
dict vulnerable files and found that the defect prediction model and
the vulnerability prediction model achieve similar performance [49];
Scandariato et al. predicted vulnerable software components by
applying text mining on source code [46].

7.2 SZZ Evaluation and Application

To evaluate SZZ and its variants, some previous studies rely on
manual analysis of a small sample of SZZ results [12, 27, 51, 59].
But manual analysis by researchers is of high cost and might iden-
tify bug introducing commits incorrectly. To build a more accurate
ground truth, the “developer-informed” information can be lever-
aged. For example, Rosa et al. identify bug introducing commits by
associating the commit id in the commit messages [45]; Wen et al.
collect the bug introducing commits in the bug reports [57]. How-
ever, it is difficult to build such dataset that contain enough pairs of
fixing commits and introducing commits for vulnerabilities. There-
fore, we follow the approach of odriguez-Pérez et al. [44], based on
the perfect test idea, to build a dataset linking vulnerabilities fixing
commits and introducing commits.

SZZ algorithms have been used in many software engineering
researches. For example, in many defect prediction studies [9, 10,
21, 26, 31, 52, 53, 60—-62], an important research topic in software
engineering, researchers use SZZ algorithms to identify the bug-
inducing commits and build a dataset to evaluate their proposed
defect prediction models. Some researchers use SZZ algorithms to
conduct different kinds of empirical studies, such as code review [4,
28], code smells [40], developer activities [6, 7], technical debt [56],
etc. In our study, we evaluate the effectiveness of SZZ algorithms
on identifying inducing commits for vulnerabilities and proposed
an approach based on an improved SZZ algorithm to refine the
software versions affected by CVE vulnerabilities.

8 CONCLUSION & FUTURE WORK

In this paper, we proposed an approach based on an improved SZZ
algorithm (V-SZZ) to refine vulnerable versions for vulnerabilities.
V-SZZ assumes that the vulnerabilities are often introduced by the
commit that modified the vulnerable code in earlier versions. Our
approach uses the fixing commits and the inducing commits for a
vulnerability to determine its vulnerable versions. Additionally, our
approach also considers the duplicated fixing commits and inducing
commits, making the results of vulnerable versions more accurate.
To evaluate our proposed approach, we manually annotate the true
inducing commits and verify the vulnerable versions for 172 vulner-
abilities with fixing commits, which are from two publicly available
datasets with C/C++ and Java projects. The experiment results show
that our proposed approach can identify more vulnerabilities with
the true inducing commits and correct vulnerable versions than
the previous SZZ algorithms. Our approach has a higher F1-score
for identifying inducing commits on both C/C++ and Java projects

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

(0.736 and 0.630) than the previous SZZ algorithms. For refining
vulnerable versions, our approach also achieves the best perfor-
mance on the two datasets in terms of F1-score (0.928 and 0.952).
In the future, we plan to analyze more vulnerabilities from projects
with different programming languages. We also want to develop a
tool based on our approach to help developers refine the versions
affected by CVE vulnerabilities.

DATA AVAILABILITY

We provide a replication package of our dataset and proposed ap-
proach, which is available at https://github.com/baolingfeng/V-
SZZ.

ACKNOWLEDGEMENT

This research/project is supported by the National Science Founda-
tion of China (No. 62141222, No. U20A20173 and No. 6190234).

REFERENCES

[1] 2017. How do the top programming languages measure up when it comes to
security? https://www.whitesourcesoftware.com/most-secure-programming-
languages. Accessed: 2021-08-23.

[2] Muhammad Asaduzzaman, Michael C Bullock, Chanchal K Roy, and Kevin A
Schneider. 2012. Bug introducing changes: A case study with android. In 2012 9th
IEEE Working Conference on Mining Software Repositories (MSR). IEEE, 116-119.

[3] Gabriele Bavota, Bernardino De Carluccio, Andrea De Lucia, Massimiliano
Di Penta, Rocco Oliveto, and Orazio Strollo. 2012. When does a refactoring
induce bugs? an empirical study. In 2012 IEEE 12th International Working Confer-
ence on Source Code Analysis and Manipulation. IEEE, 104-113.

[4] Gabriele Bavota and Barbara Russo. 2015. Four eyes are better than two: On the
impact of code reviews on software quality. In 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 81-90.

[5] Mario Luca Bernardi, Gerardo Canfora, Giuseppe A Di Lucca, Massimiliano
Di Penta, and Damiano Distante. 2012. Do developers introduce bugs when
they do not communicate? the case of eclipse and mozilla. In 2012 16th European
Conference on Software Maintenance and Reengineering. IEEE, 139-148.

[6] Mario Luca Bernardi, Gerardo Canfora, Giuseppe A Di Lucca, Massimiliano
Di Penta, and Damiano Distante. 2018. The relation between developersaAZ
communication and fix-Inducing changes: An empirical study. Journal of Systems
and Software 140 (2018), 111-125.

[7] Bora Caglayan and Ayse Basar Bener. 2016. Effect of developer collaboration
activity on software quality in two large scale projects. Journal of Systems and
Software 118 (2016), 288-296.

[8] Felivel Camilo, Andrew Meneely, and Meiyappan Nagappan. 2015. Do bugs
foreshadow vulnerabilities? a study of the chromium project. In 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories. IEEE, 269-279.

[9] Gerardo Canfora, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Anni-

bale Panichella, and Sebastiano Panichella. 2013. Multi-objective cross-project

defect prediction. In 2013 IEEE Sixth International Conference on Software Testing,

Verification and Validation. IEEE, 252-261.

Gerardo Canfora, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Anni-

bale Panichella, and Sebastiano Panichella. 2015. Defect prediction as a multiob-

jective optimization problem. Software Testing, Verification and Reliability 25, 4

(2015), 426-459.

[11] Daniel Alencar Da Costa, Shane McIntosh, Weiyi Shang, Uira Kulesza, Roberta
Coelho, and Ahmed E Hassan. 2016. A framework for evaluating the results of
the szz approach for identifying bug-introducing changes. IEEE Transactions on
Software Engineering 43, 7 (2016), 641-657.

[12] Steven Davies, Marc Roper, and Murray Wood. 2014. Comparing text-based and

dependence-based approaches for determining the origins of bugs. Journal of

Software: Evolution and Process 26, 1 (2014), 107-139.

Georg Dotzler and Michael Philippsen. 2016. Move-optimized source code tree dif-

ferencing. In 2016 31st IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE, 660-671.

[14] Jordan Ell. 2013. Identifying failure inducing developer pairs within developer
networks. In 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 1471-1473.

[15] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th ACM/IEEE international conference on Automated software
engineering. 313-324.

[10

[13

https://github.com/baolingfeng/V-SZZ
https://github.com/baolingfeng/V-SZZ
https://www.whitesourcesoftware.com/most-secure-programming-languages
https://www.whitesourcesoftware.com/most-secure-programming-languages

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

[16]

[17]

[18

[19

™
A=A

[21]

[22]

[23

[24]

[25]

[26

[27

[28]

[29

[30

[31]

[32]

[33]

[34

[35

[36]

[37]

[38

Yuanrui Fan, D Alencar da Costa, D Lo, AE Hassan, and L Shanping. 2020. The
impact of mislabeled changes by szz on just-in-time defect prediction. IEEE
Transactions on Software Engineering (2020).

Yuanrui Fan, Xin Xia, David Lo, Ahmed E Hassan, Yuan Wang, and Shanping
Li. 2021. A Differential Testing Approach for Evaluating Abstract Syntax Tree
Mapping Algorithms. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 1174-1185.

Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychological bulletin 76, 5 (1971), 378.

Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard Plattner. 2006. Large-
scale vulnerability analysis. In Proceedings of the 2006 SIGCOMM workshop on
Large-scale attack defense. 131-138.

Veit Frick, Thomas Grassauer, Fabian Beck, and Martin Pinzger. 2018. Gener-
ating accurate and compact edit scripts using tree differencing. In 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
264-274.

Takafumi Fukushima, Yasutaka Kamei, Shane McIntosh, Kazuhiro Yamashita, and
Naoyasu Ubayashi. 2014. An empirical study of just-in-time defect prediction
using cross-project models. In Proceedings of the 11th Working Conference on
Mining Software Repositories. 172-181.

Michael Gegick, Laurie Williams, Jason Osborne, and Mladen Vouk. 2008. Priori-
tizing software security fortification throughcode-level metrics. In Proceedings of
the 4th ACM workshop on Quality of protection. 31-38.

Abram Hindle, Daniel M German, and Ric Holt. 2008. What do large commits tell
us? A taxonomical study of large commits. In Proceedings of the 2008 international
working conference on Mining software repositories. 99-108.

Zhen Huang, Mariana DAngelo, Dhaval Miyani, and David Lie. 2016. Talos:
Neutralizing vulnerabilities with security workarounds for rapid response. In
2016 IEEE Symposium on Security and Privacy (SP). IEEE, 618—635.

Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. 2012. A large-scale empirical study of
just-in-time quality assurance. IEEE Transactions on Software Engineering 39, 6
(2012), 757-773.

Sunghun Kim, Hongyu Zhang, Rongxin Wu, and Liang Gong. 2011. Dealing
with noise in defect prediction. In 2011 33rd International Conference on Software
Engineering (ICSE). IEEE, 481-490.

Sunghun Kim, Thomas Zimmermann, Kai Pan, E James Jr, et al. 2006. Auto-
matic identification of bug-introducing changes. In 21st IEEE/ACM international
conference on automated software engineering (ASE’06). IEEE, 81-90.

Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W
Godfrey. 2015. Investigating code review quality: Do people and participation
matter?. In 2015 IEEE international conference on software maintenance and evolu-
tion (ICSME). IEEE, 111-120.

Frank Li and Vern Paxson. 2017. A large-scale empirical study of security patches.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. 2201-2215.

Bingchang Liu, Guozhu Meng, Wei Zou, Qi Gong, Feng Li, Min Lin, Dandan Sun,
Wei Huo, and Chao Zhang. 2020. A large-scale empirical study on vulnerability
distribution within projects and the lessons learned. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). IEEE, 1547-1559.
Shane McIntosh and Yasutaka Kamei. 2017. Are fix-inducing changes a mov-
ing target? a longitudinal case study of just-in-time defect prediction. IEEE
Transactions on Software Engineering 44, 5 (2017), 412-428.

Andrew Meneely, Harshavardhan Srinivasan, Ayemi Musa, Alberto Rodriguez
Tejeda, Matthew Mokary, and Brian Spates. 2013. When a patch goes bad:
Exploring the properties of vulnerability-contributing commits. In 2013 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement.
IEEE, 65-74.

Andrew Meneely and Laurie Williams. 2009. Secure open source collaboration:
an empirical study of linus’ law. In Proceedings of the 16th ACM conference on
Computer and communications security. 453-462.

Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and Tudor Dumi-
tras. 2015. The attack of the clones: A study of the impact of shared code on
vulnerability patching. In 2015 IEEE symposium on security and privacy. IEEE,
692-708.

Edmilson Campos Neto, Daniel Alencar Da Costa, and Uira Kulesza. 2018. The im-
pact of refactoring changes on the szz algorithm: An empirical study. In 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 380-390.

Edmilson Campos Neto, Daniel Alencar da Costa, and Uira Kulesza. 2019. Re-
visiting and improving szz implementations. In 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE,
1-12.

Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller.
2007. Predicting vulnerable software components. In Proceedings of the 14th ACM
conference on Computer and communications security. 529-540.

Viet Hung Nguyen, Stanislav Dashevskyi, and Fabio Massacci. 2016. An automatic
method for assessing the versions affected by a vulnerability. Empirical Software

(39]

[40

[41

=
&

[43

[44

S
)

[46

[47

(48]

[49

o
=

‘o
S

o
&

[54

[55

[56

[58

[59

[60

e
2

L. Bao et al.

Engineering 21, 6 (2016), 2268-2297.

Andy Ozment and Stuart E Schechter. 2006. Milk or wine: does software security
improve with age?. In USENIX Security Symposium, Vol. 6.

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. 2018. On the diffuseness and the impact on
maintainability of code smells: a large scale empirical investigation. Empirical
Software Engineering 23, 3 (2018), 1188-1221.

Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,
Konrad Rieck, Sascha Fahl, and Yasemin Acar. 2015. Vecfinder: Finding potential
vulnerabilities in open-source projects to assist code audits. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security.
426-437.

Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2018. Beyond metadata:
Code-centric and usage-based analysis of known vulnerabilities in open-source
software. In 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 449-460.

Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cédric
Dangremont. 2019. A manually-curated dataset of fixes to vulnerabilities of
open-source software. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 383-387.

Gema Rodriguez-Pérez, Gregorio Robles, Alexander Serebrenik, Andy Zaidman,
Daniel M German, and Jesus M Gonzalez-Barahona. 2020. How bugs are born: a
model to identify how bugs are introduced in software components. Empirical
Software Engineering 25, 2 (2020), 1294-1340.

Giovanni Rosa, Luca Pascarella, Simone Scalabrino, Rosalia Tufano, Gabriele
Bavota, Michele Lanza, and Rocco Oliveto. 2021. Evaluating SZZ Implementations
Through a Developer-informed Oracle. (2021), 436-447.

Riccardo Scandariato, James Walden, Aram Hovsepyan, and Wouter Joosen. 2014.
Predicting vulnerable software components via text mining. IEEE Transactions
on Software Engineering 40, 10 (2014), 993-1006.

Adriana Sejfia, Yixue Zhao, and Nenad Medvidovi¢. 2021. Identifying casualty
changes in software patches. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 304-315.

Muhammad Shahzad, Muhammad Zubair Shafig, and Alex X Liu. 2012. A large
scale exploratory analysis of software vulnerability life cycles. In 2012 34th
International Conference on Software Engineering (ICSE). IEEE, 771-781.
Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A Osborne. 2010.
Evaluating complexity, code churn, and developer activity metrics as indicators
of software vulnerabilities. IEEE transactions on software engineering 37, 6 (2010),
772-787.

Danilo Silva and Marco Tulio Valente. 2017. Refdiff: detecting refactorings in
version histories. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). IEEE, 269-279.

Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do
changes induce fixes? ACM sigsoft software engineering notes 30, 4 (2005), 1-5.
Qinbao Song, Yuchen Guo, and Martin Shepperd. 2018. A comprehensive investi-
gation of the role of imbalanced learning for software defect prediction. IEEE
Transactions on Software Engineering 45, 12 (2018), 1253-1269.

Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. 2015. Online defect predic-
tion for imbalanced data. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Vol. 2. IEEE, 99-108.

Nikolaos Tsantalis, Matin Mansouri, Laleh Eshkevari, Davood Mazinanian, and
Danny Dig. 2018. Accurate and efficient refactoring detection in commit history.
In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).
IEEE, 483-494.

Min Wang, Zeqi Lin, Yanzhen Zou, and Bing Xie. 2019. Cora: Decomposing and
describing tangled code changes for reviewer. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 1050-1061.

Sultan Wehaibi, Emad Shihab, and Latifa Guerrouj. 2016. Examining the impact of
self-admitted technical debt on software quality. In 2016 IEEE 23Rd international
conference on software analysis, evolution, and reengineering (SANER), Vol. 1. IEEE,
179-188.

Ming Wen, Rongxin Wu, Yepang Liu, Yonggiang Tian, Xuan Xie, Shing-Chi
Cheung, and Zhendong Su. 2019. Exploring and exploiting the correlations
between bug-inducing and bug-fixing commits. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 326-337.

Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in statistics. Springer, 196-202.

Chadd Williams and Jaime Spacco. 2008. Szz revisited: verifying when changes
induce fixes. In Proceedings of the 2008 workshop on Defects in large software
systems. 32-36.

Xin Xia, David Lo, Sinno Jialin Pan, Nachiappan Nagappan, and Xinyu Wang.
2016. Hydra: Massively compositional model for cross-project defect prediction.
IEEE Transactions on software Engineering 42, 10 (2016), 977-998.

Xinli Yang, David Lo, Xin Xia, and Jianling Sun. 2017. TLEL: A two-layer ensemble
learning approach for just-in-time defect prediction. Information and Software

V-SZZ: Automatic Identification of Version Ranges Affected by CVE Vulnerabilities ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Technology 87 (2017), 206—220. Software Quality, Reliability and Security. IEEE, 17-26.
[62] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. 2015. Deep learn-
ing for just-in-time defect prediction. In 2015 IEEE International Conference on

	Abstract
	1 Introduction
	2 Background
	2.1 SZZ algorithms
	2.2 Motivating Examples

	3 The Proposed Approach
	4 Manual Annotation
	4.1 Dataset
	4.2 Manual Annotation for Vulnerability-Inducing Commits
	4.3 Manual Verification for Vulnerable Versions
	4.4 Vulnerability Selection
	4.5 Annotation Results

	5 Experiment Results
	5.1 Evaluation Metrics
	5.2 Results

	6 Discussion
	6.1 The Impact of Duplicated Changes
	6.2 V-SZZ for Common Bugs
	6.3 V-SZZ for Large Commits
	6.4 Threats to Validity

	7 Related Work
	7.1 Vulnerabilities Analysis
	7.2 SZZ Evaluation and Application

	8 Conclusion & Future Work
	References

